2022
Zeng M, Hause B, van Dam NM, Uthe H, Hoffmann P, Krajinski F, Martínez-Medina A. 2022. The mycorrhizal symbiosis alters the plant defence strategy in a model legume plant. Plant Cell and Environment, https://doi.org/10.1111/pce.14421
Papantoniou D, Chang D, Martínez-Medina A, van Dam NM, Weinhold A. 2022. Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator attraction. Frontiers in Physiology, 13:1003746. https://doi.org/10.3389/fphys.2022.1003746
Martinez-Medina A, Minchev Z, Herrero S, Pastor V, Flors V, Pozo. 2022. Retos y oportunidades en el manejo de los microorganismos del suelo para el control de plagas. Boletín de la Sociedad Española de Entomología Aplicada, 6: 8-14.
Martinez-Medina A, Escobar C, Sorribas. 2022. Relaciones planta-plaga-nematodos ftoparásitos: ¿podemos esperar una respuesta consistente de la planta frente a los mismos, o quien pega primero pega dos veces?. Boletín de la Sociedad Española de Entomología Aplicada, 6: 19-27.
2021
Papantoniou D, Vergara F, Weinhold A, Quijano T, Khakimov B, Pattison DI, Bak S, van Dam NM, Martínez-Medina A. 2021. Cascading effects of root microbial symbiosis on the development and metabolome of the insect herbivore Manduca sexta L. Metabolites, 11:731. https://doi.org/10.3390/metabo11110731
Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. 2021. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. Journal of Experimental Botany, 72: 7909–7926. https://doi.org/10.1093/jxb/erab370
Martínez-Medina A, Mbaluto CM, Maedicke A, Weinhold A, VergaraF, van Dam NM. 2021. Leaf herbivory counteracts nematode-triggered repression of jasmonate-related defenses in tomato roots. Plant Physiology, 187: 1762–1778. https://doi.org/10.1093/plphys/kiab368
Pescador L, Fernandez I, Pozo MJ, Romero-Puertas MC, Pieterse CMJ, Martínez-Medina A. 2021. Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by Trichoderma volatile compounds in Arabidopsis. Journal of Experimental Botany, 73: 584–595. https://doi.org/10.1093/jxb/erab294
Mbaluto CM, Ahmad EM, Mädicke A, Grosser K, van Dam NM, Martínez-Medina A. 2021. Induced local and systemic defense responses in tomato underlying interactions between the root-knot nematode Meloidogyne incognita and the potato aphid Macrosiphum euphorbiae. Frontiers in Plant Science, 12: 632212. https://www.frontiersin.org/articles/10.3389/fpls.2021.632212/full
Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martínez-Medina A. 2021. Untapping the potential of plant mycobiomes for applications in agriculture. 2021. Current Opinion in Plant Biology, 60: 102034. https://doi.org/10.1016/j.pbi.2021.102034
Ferlian O, Lintzel EM, Bruelheide H, Guerra CA, Heklau H, Jurburg S, Kühn P, Martinez-Medina A, Unsicker SB, Eisenhauer N, Schädler M. 2021. Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic and Applied Ecology, 55:110-123. https://doi.org/10.1016/j.baae.2020.09.009
2020
Speckbacher V, Ruzsanyi V, Martinez-Medina A, Hinterdobler W, Doppler M, Schreiner U, Böhmdorfer S, Beccaccioli M, Schuhmacher R, Reverberi M, Schmoll M, Zeilinger S. 2020. The Lipoxygenase Lox1 is involved in light- and injury-response, conidiation, and volatile organic compound biosynthesis in the mycoparasitic fungus Trichoderma atroviride. Frontiers in Microbiology, 11:2004. https://doi.org/10.3389/fmicb.2020.02004
Gruden K, Lidoy J, Petek M, Podpečan V, Flors V, Papadopoulou KK, Pappas ML, Martinez-Medina A, Bejarano E, Biere A, Pozo MJ.2020. Ménage à trois: unraveling the mechanisms regulating plant-microbe-arthropod interactions. Trends in Plant Sciences, 25:1215-1226. https://doi.org/10.1016/j.tplants.2020.07.008
Pozo MJ, Albrectsen BR, Bejarano ER, de la Peña E, Herrero S, Martinez-Medina A, Pastor V, Ravnskov S, Williams M, Biere A. 2020. Three-way interactions between plants, microbes, and arthropods (PMA): impacts, mechanisms, and prospects for sustainable plant protection. The Plant Cell, 32:tpc.120.tt0720. https://doi.org/10.1105/tpc.120.tt0720
Mbaluto CM, Ahmad EM, Fu M, Martínez-Medina A, van Dam NM. 2020. The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes’ life cycle stages. AoB Plants, 12:plaa029. https://doi.org/10.1093/aobpla/plaa029
Pineda A, Martinez-Medina. 2020. El poder de lo minúsculo: el uso de microorganismos beneficiosos del suelo en el control de plagas. Phytoma, 319: 46-50
2019
Shelef O, Hahn PG, Pineda A, Tejesvi MV and Martinez-Medina A. 2019. Editorial: As above so below? progress in understanding the role of belowground interactions in ecological processes. Frontiers in Ecology and Evolution, 7:318. https://doi.org/10.3389/fevo.2019.00318
Shelef O, Hahn PG, Getman-Pickering Z, Martínez Medina A. 2019. Coming to common ground: the challenges of applying ecological theory developed aboveground to rhizosphere interactions. Frontiers in Ecology and Evolution, 7:58. https://doi.org/10.3389/fevo.2019.00058
Martínez-Medina A, Fernández I, Pescador L, Romero-Puertas MC, Pozo MJ. 2019. Trichoderma harzianum triggers an early and transient burst of nitric oxide and the upregulation of PHYTOGB1 in tomato roots. Plant Signal and Behaviour, 14:1640564. https://doi.org/10.1080/15592324.2019.1640564
Martínez-Medina A, Pescador L, Terrón-Camero LC, Pozo MJ, Romero-Puertas MC. 2019. Nitric oxide in plant-fungal interactions. Journal of Experimental Botany, 70:4489-4503. https://doi.org/10.1093/jxb/erz289
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. Plant Physiology and Biochemistry,141: 332-342. https://doi.org/10.1016/j.plaphy.2019.06.009
Martínez-Medina A, Pescador L, Fernández I, Rodríguez-Serrano M, García JM, Romero-Puertas MC, Pozo MJ. 2019. Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the Solanum lycopersicum–Rhizophagus irregularis mycorrhizal symbiosis. New Phytologist, 223:1560-1574. https://doi.org/10.1111/nph.15898
Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. 2019. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Sciences, 10:287. https://doi.org/10.3389/fpls.2019.00287
Thakur MP, Quast V, van NM, Eisenhauer N, Roscher C, Biere A, Martinez-Medina A. 2019. Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition. Oikos, 128: 1136-1146. https://doi.org/10.1111/oik.06138
2018
Ferlian O, Biere A, Bonfante P, Buscot F, Eisenhauer N, Fernandez I, Hause B, Herrmann S, Krajinski-Barth F, Meier IC, Pozo MJ, Rasmann S, Rillig MC, Tarkka MT, van Dam NM, Wagg C, Martinez-Medina A. 2018. Growing research networks on mycorrhizae for mutual benefits. Trends in Plant Sciences, 23:975-984. https://doi.org/10.1016/j.tplants.2018.08.008
Papadopoulou GV, Maedicke A, Grosser K, van Dam NM, Martínez-Medina A. 2018. Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB Plants, 10:ply031. https://doi.org/10.1093/aobpla/ply031
2017
Martínez-Medina A, Appels FVW, van Wees SCM. 2017. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signal and Behaviour, 12:e1345404. https://doi.org/10.1080/15592324.2017.1345404
Martínez-Medina A, Van Wees SCM, Pieterse CMJ. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell and Environment, 40:2691-2705. https://doi.org/10.1111/pce.13016
Pascual JA, Bernal-Vicente A, Martinez-Medina A, Ros M, Sánchez C. 2017. Biostimulant and suppressive effect of Trichoderma harzianum enriched compost for melon cultivation from greenhouse nursery to field production. Acta Horticulturae: 1164, 225-232. https://doi.org/10.17660/ActaHortic.2017.1164.29
Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees SC. 2017. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytologist, 213:1363-1377. https://doi.org/10.1111/nph.14251
Previous publications
Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U. 2016. Recognizing plant defense priming. Trends in Plant Sciences, 21:818-822. https://doi.org/10.1016/j.tplants.2016.07.009
Pascual Valero JA, Bernal-Vicente A, Martinez-Medina A, Ros M, Sanchez C. 2016. Bioestimulant and suppressive effect of Trichoderma harzianum enriched compost for melon cultivation from greenhouse nursery to field production. Acta Horticulturae, 1164: 225-231.
Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SC. 2014. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. Journal of Chemical Ecology, 40:804-15. https://doi.org/10.1007/s10886-014-0478-1
Fernández I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo MJ. 2014. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology, 40:791-803. https://doi.org/10.1007/s10886-014-0473-6
Martinez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ. 2013. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4:206. Link: https://www.frontiersin.org/articles/10.3389/fpls.2013.00206/full
Lloret E, Pastor L, Martinez-Medina A, Blaya J, Pascual JA. 2012. Evaluation of the removal of pathogens included in the proposal for a European Directive on spreading of sludge on land during autothermal thermophilic aerobic digestion (ATAD). Chemical Engineering Journal,198-199: 171-179. Link: https://doi.org/10.1016/j.cej.2012.05.068
Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38: 651-64. https://doi.org/10.1007/s10886-012-0134-6
Martinez-Medina A, Roldan A, Pascual JA. 2011. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology; 47: 98-105 . https://doi.org/10.1016/j.apsoil.2010.11.010
Martinez-Medina A, Roldan A, Albacete A, Pascual JA. 2011. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 72: 223-229. 10.1016/j.phytochem.2010.11.008
Martinez-Medina A, Roldan A, Albacete A, Pérez-Alfocea F, Pascual JA. 2011. Hormonal signalling of the Trichoderma harzianum-induced resistance to Fusarium oxysporum and growth promotion effect in melon plants. Acta Horticulturae, 898: 61 – 68. https://doi.org/10.17660/ActaHortic.2011.898.6
Martinez-Medina A, Pascual JA, Pérez-Alfocea F, Albacete A, Roldan A. 2010. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum in melon plants. Phytopathology, 100: 682 -688. 10.1094/PHYTO-100-7-0682
Martinez-Medina A, Pascual JA, Lloret E, Roldan A. 2009. Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum, and their effects on fusarium wilt in melon plants grown in seedling nurseries. Journal of the Science of Food and Agriculture, 89: 1843-1850. https://doi.org/10.1002/jsfa.3660
Martinez-Medina A, Roldan A, Pascual JA. 2009. Performance of a Trichoderma harzianum bentonite-vermiculite formulation against fusarium wilt in seedling-nursery melon plants. Hortscience, 44: 2025-2027. DOI: https://doi.org/10.21273/HORTSCI.44.7.2025
Venu RC, Beaulieu RA, Graham TL, Martinez-Medina A, Boehm MJ. 2009. Dollar spot fungus Sclerotinia homoeocarpa produces oxalic acid. International Turfgrass Society Research Journal, 11: 263 – 270.